Joe Palca

Joe Palca is a science correspondent for NPR. Since joining NPR in 1992, Palca has covered a range of science topics — everything from biomedical research to astronomy. He is currently focused on the eponymous series, "Joe's Big Idea." Stories in the series explore the minds and motivations of scientists and inventors.

Palca began his journalism career in television in 1982, working as a health producer for the CBS affiliate in Washington, DC. In 1986, he left television for a seven-year stint as a print journalist, first as the Washington news editor for Nature, and then as a senior correspondent forScience Magazine.

In October 2009, Palca took a six-month leave from NPR to become science writer in residence at the Huntington Library and The Huntington Library, Art Collections, and Botanical Gardens.

Palca has won numerous awards, including the National Academies Communications Award, the Science-in-Society Award of the National Association of Science Writers, the American Chemical Society James T. Grady-James H. Stack Award for Interpreting Chemistry for the Public, the American Association for the Advancement of Science Journalism Prize, and the Victor Cohn Prize for Excellence in Medical Writing.

With Flora Lichtman, Palca is the co-author of Annoying: The Science of What Bugs Us (Wiley, 2011).

He comes to journalism from a science background, having received a Ph.D. in psychology from the University of California at Santa Cruz where he worked on human sleep physiology.

There's a revolution underway in biology. Scientists are coming to understand genetics isn't just about genes. Just as important are smaller sequences of DNA that control genes.

These so-called regulatory elements tell genes when to turn on and off, and when to stop functioning altogether. A new study suggests that changes in these non-gene sequences of DNA may hold the key to explaining how all species evolved.

A lot of simple things in science turn out to be quite complicated. Take, for example, coffee: you may have noticed that a spilled drop of coffee doesn't dry as a brown blob, but rather as a clear blob with a dark ring around the edge.

It's taken physicists more than a decade to figure out why this effect, known technically as "the coffee ring effect," happens. But now they think they have an answer.

Any time you report on promising but preliminary results about a new therapy for a lethal disease, you worry that you might be raising false hopes. So be warned: Although this is a "good news" story, it's preliminary. Don't expect to find it at a hospital near you any time soon.

Can the most modern of technologies help solve the health woes in the poorest countries in the world? Some biomedical engineers say yes. They are designing diagnostic laboratories that fit on something as small as a credit card, and give results in minutes instead of hours or days.

These devices are sometimes referred to as a "lab on a chip." To use them, all you need to do is obtain a drop of someone's blood.

NASA's space shuttle may be down for the count, but robotic planetary missions are up, up and away. Before the end of this year, three new solar system probes are due to launch.

Juno To Jupiter

Why Jupiter? Well it's big. "It's the largest of all the planets. In fact, it's got more material in it than all the rest of the solar system combined," says Scott Bolton, a planetary scientist at the Southwest Research Institute and principal investigator for the Juno mission.

Let's say you're a vampire bat, and you are trying to decide where to bite your victim. You want a spot rich in blood, right? But how do you find such a spot?

Turns out, vampire bats have a kind of remote sensing ability that can tell them where there is a warm patch of skin on a nearby animal. And a warm patch of skin means there are blood vessels just below the skin surface. And now scientists have identified the molecular basis for this remote sensing ability.

Scientists would like to know more about how cells work. But seeing what's happening inside a cell isn't easy. It's dark in there, and even if you shine a light, many of the critical chemical reactions are invisible.

Now, a team of researchers has found a way to reveal the invisible by attaching what amounts to a reflective tag to a chemical called RNA, a close relative of DNA. Molecules made of RNA have a variety of important jobs inside cells and frequently, doing those jobs requires the RNA to shuttle from one part of the cell to another.

Pages